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Nonuniversality of compact support probability distributions in random matrix theory
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The two-point resolvent is calculated in the large-n limit for the generalized fixed and bounded trace
ensembles. It is shown to disagree with that of the canonical Gaussian ensemble by a nonuniversal part that is
given explicitly for all monomial potentialsV(M )5M2p. Moreover, we prove that for the generalized fixed
and bounded trace ensemble allk-point resolvents agree in the large-n limit, despite their nonuniversality.
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PACS number~s!: 02.50.Cw, 05.40.2a
os
ite
n-
re
ha
re

ed
th
he
h
ed
ed
ty
to
rig

ar
lo
s
in
E
d

nd
th

h
d

ou
f

-

l-

l
al.

bles
lds
ns

e.
oint

on-
con-
king
I. INTRODUCTION

Restricted trace ensembles~RTEs!, introduced a long time
ago in@1#, are interesting for a couple of reasons. They p
sess compact support not only for infinite but also for fin
n, where n is the size of the matrix. In the canonical e
semble equation~1.2! large values of matrix elements a
only exponentially suppressed, whereas in the RTEs a s
cutoff is introduced. For this reason the latter can be
garded as the corresponding microcanonical ensemble.

Much of the relevance of random matrix theory is relat
to universality properties of connected correlators in
large-n limit, that is, their independence of the details of t
probability density that defines the matrix ensemble. T
most famous property is the limiting form of the connect
density-density correlator at ‘‘short distances,’’ also call
the ‘‘sine law.’’ Very interesting also is a global universali
property: it was found that smoothed connected correla
may be expressed by the same universal function. The o
nal derivation made use of loop equations@2#; it was later
rediscovered by diagrammatical expansion@3#. All deriva-
tions are valid for canonical ensembles with an arbitr
polynomial; therefore it was generally believed that this g
bal universality property holds for all probability densitie
invariant under unitary transformations. In this paper we
vestigate two major questions, namely whether the RT
also possess universal global correlations, which are in
pendent of the details of the distribution, and, seco
whether they are equivalent to the universality classes of
canonical ensemble. Notice that usual techniques, suc
orthogonal polynomials, fail for RTEs because of the ad
tional constraint on the matrix trace.

In order to address the above problems, in a previ
publication@4# we introduced the following generalization o
the RTEs:

Pf~M ![
1

Zf
fS A22

1

n
Tr V~M ! D , V~M !5(

l 51

p

g2lM
2l ,

Zf[E DMfS A22
1

n
Tr V~M ! D , ~1.1!
PRE 601063-651X/99/60~5!/5287~6!/$15.00
-

rp
-

e

e

rs
i-

y
-

-
s
e-
,
e
as

i-

s

wheref(x)5d(x) or u(x); and compared them to the ca
nonical ensemble

P~M ![
1

Zexp@2ng Tr V~M !#,

Z[E DM exp@2ng Tr V~M !#. ~1.2!

We have calculated the spectral densityr(l)5^1/n Tr d(l
2M )& of RTEs, which is equivalent to the one-point reso
vent G(z)5^1/n Tr(z2M )21&. Comparing it to the canoni-
cal ensemble we have shown that in the large-n limit they
agree, provided that the scale factorg takes a well defined
value determined by the values of the couplingsg2l in the
potential V(M ) and by A2. This holds despite the wel
known fact that the spectral density itself is nonunivers
From the factorization property of correlators at largen we
then concluded that all finite moments of the three ensem
coincide. The question now is whether this equivalence ho
also for the connected part of higher correlation functio
and thus for higher orders in 1/n. Therefore in this paper we
investigate allk-point correlators. We start withk52:

Gf~z,w![ K 1

n
Tr

1

z2M

1

n
Tr

1

w2M L
f

2 K 1

n
Tr

1

z2M L
f
K 1

n
Tr

1

w2M L
f

, ~1.3!

where the subscriptf indicates the corresponding averag
Here we have subtracted the factorized part. The two-p
correlator as well as all higherk-point correlators are known
to be universal for the canonical ensemble@2#. There, the
subtraction corresponds to taking into account only c
nected diagrams of random surfaces. The corresponding
nected density-density correlators can be obtained by ta
the appropriate imaginary part, as given for example in@5#.
~In contrast to Ref.@5# we define thek-point resolvents with-
out a factor ofn2k22.!
5287 © 1999 The American Physical Society
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II. NONUNIVERSALITY OF Gf„z,w…

In the following we shall restrict ourselves to purely m
nomial potentialsV(M )5M2p. Since we want to show tha
the correlatorGf(z,w) is nonuniversal, in principle only two
examples of different potentials leading to a different c
relator equation~1.3! would be sufficient. In a first step w
will show that all expectation values of products of matric
have a 1/n2-expansion for the RTEs. When relating the a
erages to the corresponding canonical ones we can expli
extract their expansion coefficients, which enables us to
culateGf(z,w).

It is useful to introduce the following representation f
the d andu function:

f~x!5E
2`

` dy

2p

e( iy1e)x

~ iy1e!s
, H s50, f~x!5d~x!,

s51, f~x!5u~x!,
~2.1!

wheree501 is a small and harmless regulator that make
possible to interchange integrals. Next we calculate the
trix integral

I f
$k%~n,A![E DMfS A22

1

n
Tr M2pD

3Ma1b1
Ma2b2

. . . Makbk
, ~2.2!

where the superscript$k% summarizes the dependence on
the matrix indices. The volume element of the Hermiti
(n3n) matrices ) idMii ) i , jd ReMi j ) i , jd Im Mi j is the
usual product of independent entries. In the particular c
k50, Eq.~2.2! is just the partition functionZf . By inserting
the representation equation~2.1! into Eq. ~2.2! and exchang-
ing the order of integrations, we exhibit that Eq.~2.2! is
actually proportional to the analogous integral with canoni
measure. Indeed,

I f
$k%~n,A!5E

2`

` dy

2p
e( iy1e)A2 1

~ iy1e!s

3E DMe2[( iy1e)/n]Tr M2p
Ma1b1

. . . Makbk
.

~2.3!

The explicit dependence of the matrix integral

E DMe2a Tr M2p
Ma1b1

. . . Makbk

5a2(n21k)/2pE DMe2Tr M2p
Ma1b1

. . . Makbk

~2.4!

on the real positive parametera, allows analytic continuation
in the whole complex plane, cut along the negative part
the real axis. This provides a definition for Eq.~2.3!, and we
obtain
-

s
-
tly
l-

it
a-

l

se

l

f

I f
$k%~n,A!5E

2`

` dy

2p
e( iy1e)A2 1

~ iy1e!s S gn2

iy1e D (n21k)/2p

3E DMe2ng Tr M2p
Ma1b1

. . . Makbk

5~gn2A2!(n21k)/2p
~A2!s21

GS n21k

2p
1sD

3E DMe2ng Tr M2p
Ma1b1

. . . Makbk
, ~2.5!

whereg.0, and in the second step we have used Hank
contour integral for theG function@6#. As a consequence, w
obtain the RTE average expressed by the canonical ave

^Ma1b1
. . . Makbk

&f5
I f
$k%~n,A!

I f
$0%~n,A!

5sn,k~g,A!^Ma1b1
. . . Makbk

&,

~2.6!

where

sn,k~g,A!5~gn2A2!k/2p

GS n2

2p
1sD

GS n21k

2p
1sD . ~2.7!

On the right-hand side~rhs! of Eq. ~2.6! we average with
respect to the canonical measure Eq.~1.2! for V(M )
5gM2p. The exact relation~2.6! may be exploited to relate
the parameters of the RTEs to the parameters of the can
cal model, so that at leading order in the large-n limit all
moments of the form~2.6! are identical. It is, however, im-
possible to relate the parameters to obtain that the sca
factorsn,k(g,A) is unity up toO(1/n4). Indeed, if we assume

A25
1

2pg
1

x

n2
1OS 1

n4D ~2.8!

and use the relation for ratios ofG functions@6#, we obtain

sn,k~g,A!5~2pgA2!k/2pF12
k

2n2 S k

2p
12s21D1OS 1

n4D G
511

k

n2 S gx2
k

4p
2s1

1

2D1OS 1

n4D .

~2.9!

This shows that, with the general relation~2.8!, the 1/n2

expansion of the canonical measure translates into an2

expansion for the RTEs.„Using Stirling’s formula one can
easily convince oneself thatzb2a@G(z1a)/G(z1b)# has an
expansion in 1/z.… The nonvanishing contribution at orde
1/n2 in the scaling factorsn,k(g,A) with the k2 dependence
will be shown to lead to the nonuniversality of connect
correlators.
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The relation between the coefficientsc$k%
( j ) of the topologi-

cal 1/n2 expansion in the canonical ensemble is simply
lated to the corresponding coefficientsd$k%

( j ) for the RTEs,

^Ma1b1
. . . Makbk

&5(
j 50

`

c$k%
( j ) 1

n2 j
,

^Ma1b1
. . . Makbk

&f5(
j 50

`

d$k%
( j ) 1

n2 j
~2.10!

through Eq.~2.9!

d$k%
(0)5c$k%

(0) ,

d$k%
(1)5c$k%

(1)1kS gx2
k

4p
2s1

1

2D c$k%
(0) , ~2.11!

where we recall that we haves50,1 for f5d,u, and the
y

en
du

.
i-
-
subscript$k% summarizes all matrix indices. Equation~2.11!
immediately implies the identity of the one-point resolven
@4#

Gf~z!5
1
n (

k50

`
1

zk11
^Tr Mk&f

5
1
n (

k50

`
1

zk11 Fd$k%
(0)1OS 1

n2D G →
n→`

G~z!,

~2.12!

which has been shown in@4# for a larger class of potentials
Note thatGf(z) is of order 1 sinced$k%

(0) contains a power of
n from the trace.

Next we turn to the two-point resolventGf(z,w). Insert-
ing Eq. ~2.11! into the definition~1.3! we obtain
Gf~z,w!5
1

n2 (
k,l 50

`
1

zk11wl 11
~^Tr Mk Tr Ml&f2^Tr Mk&f^Tr Ml&f!

5
1

n2 (
k,l 50

`
1

zk11wl 11 H d$k,l %
(0) 1d$k,l %

(1) 1

n2
2Fd$k%

(0)1d$k%
(1) 1

n2GFd$ l %
(0)1d$ l %

(1) 1

n2G1OS 1

n4D J
5

1

n4 (
k,l 50

`
1

zk11wl 11 Fc$k,l %
(1) 2c$k%

(0)c$ l }
(1)2c$k}

(1)c$ l }
(0)2

kl

2p
c$k}

(0)c$ l }
(0)1OS 1

n2D G . ~2.13!
o-

s
and

on
ce
.

Here we have made use of the fact that

d$k,l %
(0) 5c$k,l %

(0) 5c$k%
(0)c$ l %

(0) ,

d$k,l %
(1) 5c$k,l %

(1) 1~k1 l !S gx2
k1 l

4p
2s1

1

2D c$k,l %
(0) .

~2.14!

As a consequence, the leading terms inGf(z,w) cancel as
they should, leaving the remaining part of order 1/n2 when
counting properly factors ofn from the traces. Remarkabl
the result~2.13! does not depend upon the values ofx ands.
The first three terms in the last line of Eq.~2.13! give pre-
cisely the universal two-point resolvent of the canonical
semble. The last term is new and can be written as a pro
of derivatives of the one-point resolventG(z)„5Gf(z)….
The final result reads

n2Gf~z,w! →
n→`

n2G~z,w!2
1

2p
]z„zG~z!…]w„wG~w!…,

~2.15!

which holds for all monomial potentialsV(M )5gM2p, both
f5d,u andA2 given by Eq.~2.8!. Note that all terms in Eq
~2.15! are of order 1. The first term is the well known un
versal two-point resolvent@2#
-
ct

n2G~z,w!5
1

2~z2w!2 S zw2a2

A~z22a2!~w22a2!
21D ,

~2.16!

wherea denotes the support of the eigenvalues@2a,a#. The
notion of universality means that Eq.~2.16! is the same for
any given polynomial potential sharing the same support@2#.
We only have to assume that the couplingsg2l are such that
the support is one arc. This is true in particular for the m
nomial potentials withg.0. The second term in Eq.~2.15!,
however, isnonuniversal, as the one-point resolvent itself i
nonuniversal. Let us give two examples, the Gaussian
the purely quartic potential,

V~M !5gM2: G~z!5g~z2Az22a2!, a25
2

g
,

V~M !5gM4: G~z!5g~2z32~2z21a2!Az22a2!,

a45
4

3g
. ~2.17!

Although in this case we have a potential depending only
one parameterg, which is thus in one to one corresponden
with the end point of supporta, the two resolvents in Eq
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~2.17! are differentfunctionsof z. Inserting them into the
result forGf(z,w), Eq. ~2.15!, we obtain forV(M )5gM2:

n2Gf~z,w!5n2G~z,w!

2g2S 2z2
2z22a2

Az22a2D S 2w2
2w22a2

Aw22a2D ,

and forV(M )5gM4:

n2Gf~z,w!5n2G~z,w!2g2S 8z32
8z424a2z22a4

Az22a2 D
3S 8w32

8w424a2w22a4

Aw22a2 D , ~2.18!

wheren2G(z,w) is given in Eq.~2.16! andA2 in Eq. ~2.8!.
These examples clearly demonstrate the nonuniversalit
Gf(z,w), which cannot be repaired by a suitable parame
redefinition.

Let us finally mention that we have verified Eq.~2.15! for
the quadratic potential following an entirely different a
proach. As has already been emphasized in@4# the fixed trace
ensemblef5d can be obtained from the ‘‘trace square
ensemble’’

Pl~M ![
1

Zl
exp„2 l $22nA2 Tr V~M !1@Tr V~M !#2%…,

Zl[E DMexp„2 l $22nA2 Tr V~M !1@Tr V~M !#2%…,

~2.19!

when taking the limitl→`. The trace square terms add s
called ‘‘touching’’ interactions to the triangulated surfa
@7#. This representation of the fixed trace ensemble not o
provides us with a different technical tool to check Eq.~2.15!
for p51, which we do not display here, it also gives us
diagrammatical interpretation in terms of Feynman grap
which explains the existence of the 1/n2 expansion in Eq.
~2.10! for the Gaussian fixed trace ensemble as a topolog
expansion.

It seems remarkable that the second term in Eq.~2.15!, in
the case of Gaussian resolventGf(z)→G(z)5(2/a2)(z
2Az22a2), has the same form of the analogous term t
appears in the connected correlator for Wigner ensem
@8,9#, written in different but equivalent forms, since

]z„zG~z!…5
22a2@G~z!#3

42a2@G~z!#2
5

a2

4
]z@G~z!#2.

III. EQUIVALENCE OF ALL HIGHER-POINT
RESOLVENTS OF THE RTEs

The two-point resolvent of the fixed and bounded tra
ensemble has turned out to be identical in the large-n limit
although nonuniversal. It is therefore natural to ask whet
this equivalence also holds for all higherk-point resolvents.
In the following we will show that this is indeed the case. L
us define the two generating functionals
of
r

ly

s,

al

t
es

e

r

t

Zf@J#[(
k50

`
1

k! E dz1 . . . dzk

3 K 1

n
Tr

1

z12M
. . .

1

n
Tr

1

zk2M L
f

J~z1! . . . J~zk!,

~3.1!

Wf@J#

[(
k50

`
1

k! E dz1 . . . dzkGf~z1 , . . . ,zk!J~z1! . . . J~zk!,

~3.2!

where

Gf~z1 , . . . ,zk![ K 1

n
Tr

1

z12M
. . .

1

n
Tr

1

zk2M L
f

2 (
sPP

Gf~zs(1) , . . . ,zs( l 1)! . . .

Gf~zs( l k2111) , . . . ,zs(k)!

~3.3!

is thek-point resolvent. The sum runs over all different pa
titions P of the k arguments and thus over all different com
binations of one- to (k21)-point resolvents within totalk
indices. In the canonical ensemble this subtraction co
sponds to taking only connected graphs into account. For
reason thek-point resolvent is there of the order 1/n2k22.
From field theory we know that the following relation be
tween the generating functionals holds:

Zf@J#5eWf[J] . ~3.4!

The correlators can be obtained in the usual way

dk

dJk H Zf@J#

Wf@J#
U

J50

5H K 1

n
Tr

1

z12M
. . .

1

n
Tr

1

zk2M L
f

Gf~z1 , . . . ,zk!.
~3.5!

In @4# it has been shown that the ensemble averages of
fixed and bounded trace ensemble can be related:

^O~M !&d5~11cn]A2!^O~M !&u , ~3.6!

where we have

cn52pA2
1

n2
for V~M !5M2p. ~3.7!

Consequently the same relation holds for the genera
functionalsZf@J# following their definition~3.1!,

Zd@J#5~11cn]A2!Zu@J#. ~3.8!

Using the relation~3.4! we can translate this into the gene
ating functional for the resolvent operators

eWd[J]5@11cn~]A2Wu@J# !#eWu[J] , ~3.9!
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or equivalently,

Wd@J#5Wu@J#1(
l 51

`

~2 ! l 11
1

l
~cn]A2Wu@J# ! l ,

~3.10!

where we have expanded the logarithm. Taking the fu
tional derivativedk/dJk and settingJ50 will truncate the
infinite sum for the following reason. From the definition w
haveWf@J50#51 and thus]A2Wf@J50#50. For this rea-
son only terms will persist where at least one functional
rivative d/dJ acts on]A2Wf@J#. We finally obtain

Gd~z1 , . . . ,zk!5~11cn]A2!Gu~z1 , . . . ,zk!

1 (
sPP; l 52, . . . ,k

(2) l 11
1

l

3@cn]A2Gu~zs(1) , . . . ,zs( l 1)!# . . .

@cn]A2Gu~zs( l k2111) , . . . ,zs(k)!#.
~3.11!

Here the sum runs again over all partitionsP of the k argu-
ments andl counts the number of blocks or resolvents in
which the arguments are divided. To prove the desi
equivalence between the twok-point resolvents we need t
know the order in 1/n2 of all terms on the rhs. Following the
diagrammatic approach mentioned at the end of the last
tion, where the fixed trace ensemble is represented by
trace squared one, we obtain the same counting of powe
in the canonical ensemble already mentioned,

Gd~z1 , . . . ,zk!5OS 1

n2k22D , ~3.12!

at least in the Gaussian case. In the following we will assu
that same holds for the monomial potentials. We ha
checked this explicitly for the two- and three-point resolve
using the definition~3.3! and the relation~2.11!. It now fol-
lows easily by induction that Eq.~3.12! also holds for the
bounded trace ensemble and that we have

n2k22Gu~z1 , . . . ,zk! →
n→`

n2k22Gd~zz , . . . ,zk!, ~3.13!

which generalizes Eq.~2.13! for the two-point resolvents
Namely in Eq. ~3.11! on the rhs the second term in th
first line is obviously subleading, due tocn;1/n2. Using
induction in the sum, each term is o
O(n2(2l 112(l 22 l 1)1•••12(k2 l k21))5O(n22k), which is also
subleading.

In the above derivation no explicit use has been made
the d or u measure apart from the fact thatu8(x)5d(x).
Instead of this, we could have used, for example,f(x)
4,
-

-

d

c-
he
as

e
e
t

of

5xu(x) and f(x)5u(x) because of@xu(x)#85u(x). More
generally we can extend the proof of relation~3.13! to an
infinite class of RTEs with

f~x!5H d~x!,u~x!,S 1

j !
xju~x! D

j PN1

J , ~3.14!

showing that all theirk-point resolvents are equivalent a
large n. We only need to show the starting point fork52
since we have used induction. This can be shown as follo
When we calculate the matrix integralI f

$k%(n,A) in Eq. ~2.2!,
we allow the parameters in the representation~2.1! to take
all non-negative integer values, which is then a represe
tion for all the measures introduced in Eq.~3.14!. The same
derivation goes through up to the result for the two-po
resolvent Eq.~2.15!, as we have kepts general and explicit
everywhere.

Let us conclude this section with a final remark. In R
@10# a topological expansion was introduced and calcula
for each resolvent,

G~z1 , . . . ,zk!5 (
h50

`
1

n2h
Gh~z1 , . . . ,zk!. ~3.15!

If we introduce the same expansion here for t
Gf(z1 , . . . ,zk), a short look at relation~3.11! tells us that
already forh51 ~‘‘genus 1’’! the equivalence~3.13! breaks
down:

n2k2212hGh>1,u~z1 , . . . ,zk!Þn2k2212hGh>1,d~z1 , . . . ,zk!.
~3.16!

In this sense we have shown that only the ‘‘planar’’ (h
50) k-point resolvents of the fixed and extended bound
trace ensembles agree.

IV. CONCLUSIONS

We have proved the nonuniversality of the two-point r
solventGf(z,w) of the generalized fixed and bounded tra
ensembles by comparing it to the universal two-point res
vent of the canonical ensemble. Apart from the general
sults for Gf(z,w) for all monomial potentialsV(M )5M2p

we have explicitly displayed its nonuniversal parts in tw
examples, the quadratic and the pure quartic potential. F
thermore, we have extended the equivalence of the gen
ized fixed and generalized bounded ensemble in the largn
limit from all finite moments@4# to all k-point resolvents,
which probe higher orders in 1/n2.

While we have shown that global universality fails for th
generalized RTEs, the issue of universality of correlators
short distance, possibly matching with the canonical
semble, is still open. We plan to come back to this interest
question in the future.
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