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Nonuniversality of compact support probability distributions in random matrix theory
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The two-point resolvent is calculated in the lamgydimit for the generalized fixed and bounded trace
ensembles. It is shown to disagree with that of the canonical Gaussian ensemble by a nonuniversal part that is
given explicitly for all monomial potential¥(M)=M?2P. Moreover, we prove that for the generalized fixed
and bounded trace ensemble klpoint resolvents agree in the largelimit, despite their nonuniversality.
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I. INTRODUCTION where ¢(x) = d(x) or 6(x); and compared them to the ca-

Restricted trace ensembl@RTES, introduced a long time nonical ensemble

ago in[1], are interesting for a couple of reasons. They pos-
sess compact support not only for infinite but also for finite
n, wheren is the size of the matrix. In the canonical en-
semble equatiorf1.2) large values of matrix elements are
only exponentially suppressed, whereas in the RTEs a sharp
cutoff is introduced. For this reason the latter can be re- ZEJ DM exg —ng TrV(M)]. (1.2
garded as the corresponding microcanonical ensemble.

Much of the relevance of random matrix theory is related

to universality properties of connected correlators in thewe have calculated the spectral dengifh) =(1/n Tr (A
largen limit, that is, their independence of the details of the — M)) of RTEs, which is equivalent to the one-point resol-
probability density that defines the matrix ensemble. TheentG(z)=(1/n Tr(z—M) ). Comparing it to the canoni-
most famous property is the limiting form of the connectedcg| ensemble we have shown that in the langkmit they
density-density correlator at “short distances,” also calledagree, provided that the scale factptakes a well defined
the “sine law.” Very interesting also is a global universality yajue determined by the values of the couplings in the
property: it was found that smoothed connected correlatorgotential V(M) and by A2. This holds despite the well
may be expressed by the same universal function. The origknown fact that the spectral density itself is nonuniversal.
nal derivation made use of loop equatidi®y; it was later  From the factorization property of correlators at largeve
rediscovered by diagrammatical expansf@. All deriva-  then concluded that all finite moments of the three ensembles
tions are valid for canonical ensembles with an arbitrarycoincide. The question now is whether this equivalence holds
polynomial; therefore it was generally believed that this glo-3|so for the connected part of higher correlation functions
bal universality property holds for all probability densities 3nd thus for higher orders inri/ Therefore in this paper we

invariant under unitary transformations. In this paper we in'investigate alk-point correlators. We start witk=2:
vestigate two major questions, namely whether the RTEs

also possess universal global correlations, which are inde-

pendent of the details of the distribution, and, second, G,z W)E<£Tr 1 ETr 1 >

whether they are equivalent to the universality classes of the gL n z—Mn w-M

canonical ensemble. Notice that usual techniques, such as

orthogonal polynomials, fail for RTEs because of the addi- —<1Tr 1 > <£Tr 1 > 13

tional constraint on the matrix trace. n z—M s\N w—M ¢' '
In order to address the above problems, in a previous

publication[4] we introduced the following generalization of o ,
the RTEs: where the subscrip$ indicates the corresponding average.

Here we have subtracted the factorized part. The two-point
correlator as well as all highéepoint correlators are known
1 p to be universal for the canonical ensemb®. There, the
P¢(M)E—¢><A2— ﬁTrV(M)), V(M)=2 guM?, subtraction corresponds to taking into account only con-
=1 nected diagrams of random surfaces. The corresponding con-
nected density-density correlators can be obtained by taking
1 the appropriate imaginary part, as given for examplg5ih
— 2_ = (In contrast to Ref[5] we define the-point resolvents with-
Z"’_f PM d’(A nTrV(M))' (@D out a factor ofn?~2))

1
P(M)Ezexq—ngTrV(M)],
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[l. NONUNIVERSALITY OF G,(z,w) « = dy iyt a2 1 gn2 (n2+K)/2p
— I €

In the following we shall restrict ourselves to purely mo- Ly (M A)= ,wﬂe ’ (iy+e)sliyt+e
nomial potentials/(M)=M?2P. Since we want to show that
the correlatoiG ,(z,w) is nonuniversalin principle only two % j DMe-naTr M2y M
examples of different potentials leading to a different cor- € arBby ey
relator equatior(1.3) would be sufficient. In a first step we
will show that all expectation values of products of matrices 22 (n2 k)2 (A%)s~1
have a I?-expansion for the RTEs. When relating the av- =(gn°A%) n2+k
erages to the corresponding canonical ones we can explicitly r 7p +s

extract their expansion coefficients, which enables us to cal-
culateG 4(z,w). g Trm20
It is useful to introduce the following representation for Xf DMe "9 Mag, -+ -Mype (29
the 6 and 6 function:
whereg>0, and in the second step we have used Hankel's
= dy eliy+ex [s=0, d(X)=8(X), contour integral for thé" function[6]. As a consequence, we

X)= - obtain the RTE average expressed by the canonical average
P07 L 2r Gyrep s=1 s0=60x),
2.9) 1% (n,A)

<Malﬁl PR Maklgk>¢:

{0}
wheree=0" is a small and harmless regulator that makes it ls'(nA)
pps§ible to interchange integrals. Next we calculate the ma- =50 A Mg, - - - Mes),
trix integral
(2.6)
{k} 2 1 2 where
1(n,A)= | DM | A>~ —TrM?P
n 2
—+
XMa g, Map, - Mg, (2.2 S F(zp s
Snk(9,A)=(gn“A?) p—nr- 2.7
where the superscrigk} summarizes the dependence on all r 2p +s

the matrix indices. The volume element of the Hermitian
(nxn) matrices IT;dM;IT;<;d ReM;IT;;d ImM;; is the  On the right-hand sidérhs) of Eq. (2.6) we average with
usual product of independent entries. In the particular casgspect to the canonical measure E@.2) for V(M)
k=0, Eq.(2.2) is just the partition functior€,, . By inserting = gm?2». The exact relatiori2.6) may be exploited to relate
the representation equation.1) into Eq.(2.2) and exchang-  the parameters of the RTEs to the parameters of the canoni-
ing the order of integrations, we exhibit that EQ@.2) is  cal model, so that at leading order in the largdimit all
actually proportional to the analogous integral with canonicalnoments of the forn{2.6) are identical. It is, however, im-
measure. Indeed, possible to relate the parameters to obtain that the scaling
factorsy «(g,A) is unity up toO(1/n%). Indeed, if we assume

Ig‘}(n,A)=f:g—ie(iyﬂmz(iy—i g A2:i+i+o(i) .

2pg  n? n* '
XJ DMe (v + oI My apy -+ - Mayp,: and use the relation for ratios &f functions[6], we obtain

(2.3 K [k
N o sn,k(g,A>=(2pgA2)k’2p{1— o2l 3p t2571]+0| =
The explicit dependence of the matrix integral
k k 1 1

J DMe_aTerpMalﬁl"'MakBk :l+¥ gx_%_s—i_z " F> (2.9
:af(n2+k)/2pf DMeiTerpMalﬁl .My, This shows that, with the general relati¢®.8), the 1h?

expansion of the canonical measure translates intona 1/
(24 expansion for the RTEqUsing Stirling’s formula one can

easily convince oneself thab [T (z+a)/T'(z+b)] has an
on the real positive parametarallows analytic continuation expansion in X.) The nonvanishing contribution at order
in the whole complex plane, cut along the negative part ofl/n? in the scaling factos;, (g,A) with the k? dependence
the real axis. This provides a definition for Eg.3), and we  will be shown to lead to the nonuniversality of connected
obtain correlators.
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subscript{k} summarizes all matrix indices. Equati¢2.11)

cal 1h? expansion in the canonical ensemble is simply reimmediately implies the identity of the one-point resolvents

lated to the corresponding coefﬂCleruig() for the RTEs,

1
= (i)
(Map, - - - Makﬁk>_§0 ol
S (i) 1
(Mg, - -Mag)s jgo d{k}nzj (2.10

through Eq.(2.9

(0)— (0)
djij=Cliy »

{(:k}) ’ (2.1])

k 1
(D (1) _ sl N (0]
d{k}—c{k}+k(gx ap S+ A

where we recall that we havwe=0,1 for ¢= 6,6, and the

1
G¢(z,w)——2

1
n?

1
_4

o]
E: k+1 I+1

cfihy—cfie

Here we have made use of the fact that
dfehy=cfRhy=cfileff).
k+1 1
gX— E —S+ E CEE,)H .
(2.19

As a consequence, the leading termsGp(z,w) cancel as
they should, leaving the remaining part of orden?lvhen
counting properly factors of from the traces. Remarkably
the result(2.13 does not depend upon the valuesxainds.
The first three terms in the last line of E@Q.13 give pre-

dfichy=cfich + (k+1)

- 1
() 4 41 = _
2: Sl |+1{d{k,l}+d{k,l}nz

0)(1) _
ey

(4]

(2.12

which has been shown @] for a larger class of potentials.
Note thatG 4(2) is of order 1 sinced%ﬁ}) contains a power of
n from the trace.

Next we turn to the two-point resolve@,(z,w). Insert-
ing Eq. (2.1]) into the definition(1.3) we obtain

- 1
Z: m((TrM TrM'y ,—(TrM¥) (TrM"),)

1 1
—2+OF

dfi+ i || dtiy+af

|

1. (2.13

I
e X o0, of =
Gl Cliy ~ 2p S Cty T O| 3

zw—a?

n°G(z,w)= 1),

(2.19

(w—a)_

7
2(z=w)*\ V(2

wherea denotes the support of the eigenvalllesa,a]. The
notion of universality means that E(R.16) is the same for
any given polynomial potential sharing the same suprt

We only have to assume that the couplirggs are such that
the support is one arc. This is true in particular for the mo-
nomial potentials witlg>0. The second term in E¢2.15),
however, isnonuniversal as the one-point resolvent itself is
nonuniversal. Let us give two examples, the Gaussian and
the purely quartic potential,

cisely the universal two-point resolvent of the canonical en-

semble. The last term is new and can be written as a product

of derivatives of the one-point resolvel@(z) (=G 4(2)).
The final result reads

n—oo

NG 4(z,W) — N?G(Z,W) — 5= d,(2G(2)) 3 (WG(W)),

(2.19

which holds for all monomial potentialé(M)=gM?, both

V(M)=gM2:  G(2)=g(z— Z—a?), az:g,
V(M)=gM*  G(2)=g(22°~ (22*+a?%)J2*~a?),
a“:%- (2.17)

¢= 6,0 andA? given by Eq.(2.8). Note that all terms in Eq.  Although in this case we have a potential depending only on
(2.15 are of order 1. The first term is the well known uni- one parameteg, which is thus in one to one correspondence
versal two-point resolveri?] with the end point of suppora, the two resolvents in Eq.
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(2.17 are differentfunctionsof z Inserting them into the 1
result forG4(z,w), Eq.(2.15, we obtain forvV(M)=gM?: Z¢,[J]EE Ff dz; ...dz
k=0 K!
NG 4(z,w)=n?G(z,w) 1 1 1
, 272_ 32 ow?— a2 X<ﬁTrZ]_—M . .ﬁTer_M>¢J(Zl) . d(Z),
—9) 227 || W )
Z?-a w’—a 3.9
and forV(M)=gM*: W,y[J]
8z'—4a%z>—a* o1
nZGQS(ZlW):nzG(Z,W)_gZ( gl 2% < EE k—J dz;...dzGy(zy, ...,2)3(z1) ... I(Z),
Ne=rd =
5 8w*—4a’w?—a* (32
x| 8w = W az ' (218 yhere
2 L : 2 1 1 1 1
wheren<G(z,w) is given in Eq.(2.16 andA“ in Eq. (2.8). Gy(zy, ... z)=\=Tr . .—Tr
These examples clearly demonstrate the nonuniversality of n z-M n z—M )

G4(z,w), which cannot be repaired by a suitable parameter

redefinition. _ G.(z 7 o
Let us finally mention that we have verified EG.15 for ;e:P HZo) - 2o0y)

the quadratic potential following an entirely different ap-

proach. As has already been emphasizddjihe fixed trace G¢(Za(|k,l+ 1) Zo(k)
ensemble¢= 5 can be obtained from the “trace squared (3.3
ensemble”

is thek-point resolvent. The sum runs over all different par-
1 5 ) titions P of the k arguments and thus over all different com-
PiM)= —-exp(={=2nA"TrV(M) +[TrV(M)]5), binations of one- to K—1)-point resolvents within totak
! indices. In the canonical ensemble this subtraction corre-
sponds to taking only connected graphs into account. For this
Z,Ef DMexp(—l{—2nA2TrV(M)+[TrV(M)]%), reason thek-point resolvent is there of the ordern#f 2,
From field theory we know that the following relation be-
(2.19 : X )
tween the generating functionals holds:
when taking the limil —c. The trace square terms add so- W]
" o . ; Zy[J]=e"e, (3.9
called “touching” interactions to the triangulated surface
[7]. This representation of the fixed trace ensemble not onlythe correlators can be obtained in the usual way
provides us with a different technical tool to check E2j15
for p=1, which we do not display here, it also gives us a
diagrammatical interpretation in terms of Feynman graphs, Rl [qu[J]

53| W,[J]

<—Tr LT

; ) ; el n z;—M n z—M
which explains the existence of thent/expansion in Eq. 5K 4
(2.10 for the Gaussian fixed trace ensemble as a topological Gy(Z1, -+ 42

expansion. (3.9

It seems remarkable that the second term in(BdLH), in .
: - > In [4] it has been shown that the ensemble averages of the
the case of Gaussian resolvely(z)—G(2)=(2/a%)(z {ixed and bounded trace ensemble can be related:

—z?—a?), has the same form of the analogous term tha
appears in the connected correlator for Wigner ensembles (O(M)) 5= (1+Crdp2){O(M)) ), (3.6)
[8,9], written in different but equivalent forms, since

J=0

where we have
-2a%[G(2)]® a?

3,(26(2))=—————>=—+3]G(2)]* 1
’ 4-a%G(2)? 4°° Ca=2pA°= for V(M)=M?. 3.7)
n
ll. EQUIVALENCE OF ALL HIGHER-POINT Consequently the same relation holds for the generating
RESOLVENTS OF THE RTEs functionalsz ,[J] following their definition(3.1),
The two-point resolvent of the fixed and bounded trace ZL31= (14,052 Z,[ 3] 3.9
n : .

ensemble has turned out to be identical in the lardemit

although nonuniversal. It is therefore natural to ask WhetheUSing the re|ati0r(3_4) we can translate this into the gener-

this equivalence also holds for all higHeipoint resolvents. ating functional for the resolvent operators
In the following we will show that this is indeed the case. Let

us define the two generating functionals eWald=[1+c,(dp2W,[I])]eWel, (3.9
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or equivalently, =x0(X) and ¢(x)= 6(x) because ofx0(x)]' = 6(x). More
generally we can extend the proof of relati13 to an

- 1 infinite class of RTEs with
W J]= W]+ 2, (=)' (CadndWol 3],

(310 ¢><x)=[ 8(x),0(x),
where we have expanded the logarithm. Taking the func-
tional derivative /63" and settingd=0 will truncate the  showing that all theirk-point resolvents are equivalent at
infinite sum for the following reason. From the definition we |arge n. We only need to show the starting point fioe= 2
haveW,[J=0]=1 and thusix2W[J=0]=0. For this rea-  since we have used induction. This can be shown as follows.
son only terms will persist where at least one functional deyyhen we calculate the matrix integﬂé)‘}(n,A) in Eq. (2.2),
rivative 6/ 6] acts onda2Wy[J]. We finally obtain we allow the parametes in the representatiof2.1) to take
all non-negative integer values, which is then a representa-

jilxj a(x)) ] . (3149
' jeN,

Colzy, - 2= (1FCndp2)Golzy, - - - ) tion for all the measures introduced in E§.14). The same
a1 derivation goes through up to the result for the two-point
+ o i} (=)' T resolvent Eq(2.19, as we have kepd general and explicit
oepil=2 everywhere.
X[Cndn2G(Za(1ys - - - Zai)] - - - Let us Conqlude this sgction wi'Fh a final remark. In Ref.
[10] a topological expansion was introduced and calculated
[CnﬁAZGo(Za(lk,lu), e Zogo)]- for each resolvent,

(3.1 .

1
. . G(zy,...,20)= —0G 2. 3.1
Here the sum runs again over all partitioPof the k argu- (1 2) hZO n2h n(Z1 2d. (319

ments and counts the number of blocks or resolvents into
which the arguments are divided. To prove the desiredf we introduce the same expansion here for the
equivalence between the tvkepoint resolvents we need to Gy4(21, - - .z, @ short look at relatiort3.13) tells us that
know the order in H? of all terms on the rhs. Following the already forh=1 (“genus 1”) the equivalenc&3.13 breaks
diagrammatic approach mentioned at the end of the last segown:

tion, where the fixed trace ensemble is represented by thr?ZK*Z*ZhGh

2k—2+2h
. : Zy, .. ) #EN G Zy, o0 Zy)
trace squared one, we obtain the same counting of powers as 1421 2 h=1(Z1 )

in the canonical ensemble already mentioned, (316
1 In this sense we have shown that only the “planati (
Gs(zy, ... ,zk)=O( 2k2)’ (3.12 =0) k-point resolvents of the fixed and extended bounded
n trace ensembles agree.

at least in the Gaussian case. In the following we will assume
that same holds for the monomial potentials. We have
checked this explicitly for the two- and three-point resolvent
using the definition3.3) and the relatior(2.11). It now fol-
lows easily by induction that Eq3.12 also holds for the
bounded trace ensemble and that we have

IV. CONCLUSIONS

We have proved the nonuniversality of the two-point re-
solventG ,(z,w) of the generalized fixed and bounded trace
ensembles by comparing it to the universal two-point resol-
vent of the canonical ensemble. Apart from the general re-

oo sults for G 4(z,w) for all monomial potentiald/(M)=M?2P
N 2G(z;, ...,z — N 2G4z, ....z), (3.13  we have explicitly displayed its nonuniversal parts in two
examples, the quadratic and the pure quartic potential. Fur-
which generalizes Eq(2.13 for the two-point resolvents. thermore, we have extended the equivalence of the general-
Namely in Eq.(3.11) on the rhs the second term in the ized fixed and generalized bounded ensemble in the large-
first line is obviously subleading, due t@,~1/n? Using limit from all finite moments[4] to all k-point resolvents,
induction in the sum, each term is of which probe higher orders inr.
O(n~@lir2z=1)+ - +2(=l-1y=0(n~2X), which is also While we have shown that global universality fails for the
subleading. generalized RTESs, the issue of universality of correlators at

In the above derivation no explicit use has been made ofhort distance, possibly matching with the canonical en-
the & or 6 measure apart from the fact thét(x)= 5(x). semble, is still open. We plan to come back to this interesting
Instead of this, we could have used, for exampfgx) question in the future.
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